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MODELING VIRAL EPIDEMIOLOGY IN CONNECTED NETWORKS*

WILLIAM M. SPEARSYt, LORA BILLINGS>%, AND IRA B. SCHWARTZ?
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February 14, 2001

Abstract. We derive some Markovian and differential equation models of viral epidemiology
on connected networks. We examine the stability properties of endemic states for models based on
contact rates derived from probabilistic concepts of connectivity. In particular, boundaries which
delineate the onset of viral propagation in a connected network are derived and analyzed.

Key words. viral epidemiology, Markov chains, transient behavior.

1. Introduction. We are becoming increasingly dependent on large intercon-
nected networks for the control of our resources, such as the Internet, communications
networks, and power grids. The advantage of these networks is the ability to route
resources in a reasonably optimal fashion. However, their interconnectivity, coupled
with the lack of global view of what is happening in these networks, can lead to
tremendous problems in network reliability. For example, small local failures can eas-
ily propagate to entire networks, causing loss of service and corruption of data. Also,
deliberate attacks, such as viral attacks, can easily cause widespread havoc. The pur-
pose of this paper is to outline a broad framework for describing the spread of viruses.
The framework is designed to be as general as possible, with restrictive assumptions
only introduced when needed. The focus will be on two complementary analysis tech-
niques — discrete-time Markov chain models and continuous-time differential equation
models. We give a brief overview of Markov chains first.

9. Overview of Markov Chains. A discrete-time Markov chain is a dynamical
systemn composed of S discrete states. At each time step, the Markov chain can change
states. Let X; be the random variable for the Markov chain, which can take on any
of the S states at time ¢. The system is described by an § x S matrix Q, which gives
the probability of transitioning from one state a at time t — 1 to state b at time ¢,
where a component of Q is given by:

Q(a,b) = pap = P(Xe=0b] Xt = a)

The p, values define the “one-step” probability transition matrix Q, since Q
describes the probability of transitioning from state to state in one time step. The
transient behavior of the system is obtained from the “n-step” probability transition
values, which are obtained from the nth power of Q:

Q™a,b) = pap™ = P(Xy =b| Xion=a)

It is also possible to compute conditional probabilities over a set of states. Define a
predicate Predp and the set B of states that make Predp true. Then the probability

*This work was supported by ONR.
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2 W. SPEARS, L. BILLINGS, & 1. SCHWART?Z

that the system will be in one of the states of B at time t, given it is in state a at
time ¢t —n is:

Pa,B(") = P(Xt €B ' Xien = CL) = Z pa,b(n)
beB

Analysis of Markov chain behavior can be considered to be “instantaneous” or
“cumulative.” Instantaneous behavior refers to events that occur at a particular
time. An example would be whether the system is at a particular state at that time.
Cumulative behavior refers to events that have occurred by a certain time.

2.1. Instantaneous Transient Behavior at Time n. The probability of being
in some state b at time n is given by simply considering the probability of each possible
n-step transition, appropriately weighted by the a priori probabilities:

n™ = P(Xa=b) = 3 p@ p7)

where the a priori probability of a system being in state a at time 0 is denoted as

(0)
Y2
The probability that the system is in one of the states of B at time n is:
ps™ = 3 p™ (2.1)
beB

Finally, it is possible to compute the probability that the system will transition
from one set of states to another set of states. Let Pred4 be another predicate over
the states, and denote A to be the set of states that make Preds true. Then the
probability that the system will be in one of the states of B at time ¢, given that it is
in one of the states of A at time t — n, is:

(n) = (2.2)
ZQGA pa(t_n) pa,B(n)

(t—n) (n)

E: D Da,B

P(X; € B | X¢ne€ A) = 042 (t=n) - = (t—n)
pa 2acAPa

PaA,B

which involves a renormalization over the states indexed by A. Since Eq. 2.2 describes
how a system transitions from a group of states to another group of states, this
raises the intriguing notion that a system with a large number of states might be
simplified (or aggregated) into a system with a smaller number of groups of states.
Unfortunately, this is hard to do in general since Eq. 2.2 is a time-dependent equation
(thus making the aggregated Markov chain non-stationary), however some progress
has been made in this area [3]. The nice feature of this formalization is that any
predicate over the states can be used.

It is possible to generalize further to arbitrary functions f over the states and
compute, for example, the expected value of that function, at time n:

E[fI™ = S p™ fp) (2.3)
b

2.2. Cumulative Transient Behavior. Another common computation involv-
ing Markov chains is referred to as the “mean first passage times” for going from state
a to state b (for a nice discussion of this, see [4]). This refers to the length of time that
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it takes (on the average) to reach state b for the first time, given that the process is
currently in state a. Answering such questions involves solving the set of simultaneous
equations:

Map = Pap + P Pak (L+mip) (2.4)
k£b

where m, 5 denotes the mean first passage time from state a to state b. To understand
the equation, consider transitioning from state a to b in one move. This occurs with
probability p, » and requires only one step. However, suppose the system transitions
from state a to state k, where k is not equal to b. This occurs with probability pa,
and requires one step. However, there now remain myp steps to state b.

As before, if there is interest in a set B of states, it is possible to compute the
mean first passage time for the system to first enter that set of states, given that it is
currently outside that set:

Me,B = Zpa,b + Zpa,k (1+mk,B)

beB k¢B

where m, p denotes the mean first passage time from state a to any of the states in
set B, and a is not in B. This is very similar to Eq. 2.4, with the exception that the
probability of entering state B in one step is simply the sum of the probabilities of
entering each state within B.

Once this system of simultaneous equations is solved, it is possible to calculate
the “expected waiting time” to reach a state in B, given a random initial state, via:

EWTg = Z pa(o) 0+ zpa(o) Ma,B
a€EB agB

There are two parts to this equation. The first part reflects the possibility that
a random initial population is in state B, and hence has a zero waiting time. The
second part reflects the mean passage time from initial populations not in B, to a
state in B. Clearly this simplifies to:

EWTg = Z Pa(o) Mq,B
a¢B

This holds for any set of states B, and thus it can be used to provide expected
waiting times for a variety of events.

3. Markov Models of Viral Spread. In this paper we are concerned with the
spread of viruses throughout a network. We assume that the network consists of N
nodes. Each node can be in one of four medical conditions: Susceptible (S), Exposed
(E), Infected (1), and Cured (C). It is often customary to also refer to these conditions
as “states”, but that would cause some confusion with the Markov definition of state.
In this paper the number of nodes in the various medical conditions will define a
Markov state. In general, if there are m medical conditions and N nodes, the number
of Markov states S can be shown to be:

S:(N+m—l>
m—1
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3.1. The Two-Condition I-C Case. We first start by ignoring the Susceptible
and Exposed conditions, and assume that the nodes can either be infected or not
infected (cured). Infected nodes can remain infected or become cured. Likewise,
cured nodes can remain cured or become infected. This is the simplest case to analyze.
Figure 3.1 illustrates the transitions between these two medical conditions, with their
associated probabilities.

)
SeogiBoor
_

F1G. 3.1. The transition diagram showing how a node can change medical conditions.

Let I be the number of infected nodes and C be the number of cured nodes.
Since each node must be infected or cured at any given time, I + C = N. The
Markovian state is defined by the pair (1, C)) and we want to compute the probability
of transitioning from state a = (I, C) to state b= (I',C"):

Pabp = P(Xt = (I’)Cl) l X1 = (170))

Such a transition means that I' — I more cured nodes are infected than infected
nodes are cured. Note that if I' < I then the previous sentence is still mathematically
and grammatically correct, but it is perhaps more understandable to say that J — I’
less cured nodes are infected than infected nodes are cured.

Let = be the number of infected nodes that are cured. Then since there are I
infected nodes, I — z of them are not cured. If we use J to denote the probability
of curing an infected node, then the probability of curing z of the infected nodes is

simply:
(1)@ra-o

Also, since I' — I more cured nodes are infected than infected nodes are cured,
we know that = + I' — I of the cured nodes must become infected. Since there are C
cured nodes then C — (z + I' — I) of the cured nodes are not infected. If we use '
to denote the probability of infecting a cured node, then the probability of infecting
z + I' — I of the cured nodes is simply:

C el — NC—(z+I"—I
(Lo )= pemerr=

We can put this all together by summing over all possible values of z:

por=3( 1 ) @ra-6x

z (3.1)

C - C—(z+1'—1
($+[,_1>(,U/I)I+[ I(l-—p’) (z=+ )

It now only remains to bound z correctly, which can be achieved by examining the
combinatorials. The first combinatorial implies that 0 < £ < I. The second implies
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that I — I' <z < C —I' + I. In order for all of these constraints to be held we get:

min{l,C—1'+1} < I

Pa,b = Z

z=maz{0,I-1'}

L) era-o'
(3.2)

C i (2] —
(:C+I,_I)(ﬂ/)z+l I(l—p,’)c (z+I'-1)

Since C' = N — I, this equation can be slightly simplified, but we do not do that
here, in order to provide a smooth transition to the three-condition case. It is also
useful to note that the number of Markov states for the two-medical condition case is

simply:

_(N+2-1Y _
s=( M3t )=we

3.2. The Three-Condition S-I-C Case. We now add in the Susceptible con-
dition. Susceptible nodes can remain susceptible or become infected. Infected nodes
can remain infected or become cured. Cured nodes can remain cured or become sus-
ceptible. Figure 3.2 illustrates the transitions between these three medical conditions,

with their associated probabilities.

8
N

CO @O
”'\@J g
O

FI1G. 3.2. The transition diagram showing how a node can change medical conditions.

1-3

Again, let I be the number of infected nodes and C be the number of cured nodes.
Let S be the number of susceptible nodes. Since each node must be susceptible,
infected or cured at any given time, S + I + C = N. The Markovian state is defined
by the triple (S,7,C) and we want to compute the probability of transitioning from
state a = (S, I,C) to state b = (5", I',C'):

Pap = P(Xe=(S1',C") | X1 = (5,1,0))

Such a transition means that I’ — I more susceptible nodes are infected than in-
fected nodes are cured. It also means that S’ —S more cured nodes become susceptible
than susceptible nodes become infected.

Let = be the number of infected nodes that are cured. Then since there are [
infected nodes, I — z of them are not cured. If we use § to denote the probability
of curing an infected node, then the probability of curing z of the infected nodes is

again:
(1 )era-5=
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Also, since I' — I more susceptible nodes are infected than infected nodes are
cured, we know that = + I' — I of the susceptible nodes must become infected. Since
there are S susceptible nodes then S — (z + I' — I) of the susceptible nodes are not
infected. If we use g’ to denote the probability of infecting a susceptible node, then
the probability of infecting x + I' — I of the susceptible nodes is simply:

S 21— NS—(z4+T'—1I
(Lar s )@=y e

Finally, since S’ — S more cured nodes become susceptible than susceptible nodes
become infected, we know that = + I' — I + 8’ — S of the cured nodes must become
susceptible. Since there are C cured nodes then C — (z+ I' — I + §' — S) of the cured
nodes are not made susceptible. If we use ¢’ to denote the probability of making a
cured node susceptible, then the probability of making z+I' — I + 5’ ~ S of the cured
nodes susceptible is simply:

C _I1S C—(z+1'—I1+5'—5)
( 6’)I+I I+ 8 S(l _ 6/)
c+I'—1+58 -8 )(

Putting this all together we get:

I

T

min{l,5—I'+1,C—I'+I—5'+S}
Pab = (

) (6)7(1 - 8)"~x

z=maz{0,I-I' [-I'+5-5"}

S z I_ —(z [— 3.3
($+I’-1)W)+I I — p)S~ =Dy (33)
( I ? S-S ) (@)= 5 - 6’)0“(z+1'_1+s'_s)
z+I'—T1+5" —

For the three-medical condition case the number of Markov states is given by:

N+3-1 (N+2)(N+1)
5:( 3-1 ):“—2“—”

3.3. The Four-Condition S-E-I-C Case. It is possible to add in the Exposed

condition. A susceptible node becomes exposed before it becomes infected. Figure 3.3
illustrates the transitions between these four medical conditions, with their associated

probabilities.

1-8°

| T

F1G. 3.3. The transition diagram showing how a node can change medical conditions.
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The Markovian state is defined by the tuple (S, E, I, C') and we want to compute
the probability of transitioning from state a = (S, E, I, C) to state b = (S, E,I'C'):

pas = P(Xe=(S,E,I'C") | Ximr = (S, E, 1,0))

Such a transition means that I’ — I more exposed nodes are infected than infected
nodes are cured. It also means that E' — E more susceptible nodes become exposed
than exposed nodes become infected. Finally, S’ — S more cured nodes become
susceptible than susceptible nodes become exposed.

It is easy to produce p, s by extending Equation 3.3:

min{l,E~I'+1,S—I'+I-E'+E,C~I'+1-E' +E—5'+5} [
Pap = ( . ) @)1 -8)""x
z:ma:z:{O,I—I’,I—I’+E-—E’,I—I’+E—E’+S—S'}
E i E—(z+I'—1
( sl -1 ) (W)= =11 — p)BE D
S . ‘o _ . .
<x+[r_[+E:_E>(a) +I'—I+E E(l_a)S (z+I'—I+E E)><
o N+’ —I+E' —E+5'—§ nC—(z+I'—I+E —E+5'—5)
(z+[’—I+E’—E+S’—S>(5) (1-4)

(3.4)

For the four-medical condition case the number of Markov states is given by:
N+4-1
s=(")

3.4. Discussion. Given the above Markov models, we can use them to determine
various quantities of interest. For example, the probability distribution of infected
nodes at time 1 can be obtained, as well as the probability of extinction. The expected
number of infected nodes at time n is easily computed. Finally, the mean passage
time until viral extinction is easily obtained.

Given these preliminary models, it should be clear at this point that they can
easily be expanded to include m medical conditions, assuming that the transitions
between medical conditions occur in a ring (as is true for the models examined thus
far). Another important point is that the parameters 8, 1, a, and &' need not be
constants — they in fact can be functions that depend on the state that the process
is in. This level of generality can provide for nonlinear dynamics of the system, as
we will see in the following discussion concerning differential equation models of viral
spread.

4. Differential Equation Models of Viral Spread. We can now provide
analogous differential equation models.

4.1. The Two-Condition I-C Case. If we let i = I/N and ¢ = C/N be the
proportion of infected and cured nodes (respectively) then:

@
dt
de

E:i&—cpf

=cu —16

(4.1)
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Since 7 + ¢ = 1 this can be simplified to:

di

d—z =cp' —id=(1—d) —ib (4.2)

where p' is the probability of infecting a cured node and § is the probability of curing
an infected node.

4.2. The Three-Condition S-I-C Case. If weadd in the Susceptible condition
then the system can be described as follows:

ds

Q8o _ st ot
a = e

o

d—z:su'—id (4.3)
de . ,

E—zé—cé

where s = S/N is the proportion of susceptible nodes. In this case ' is the probability
of infecting a susceptible node, d is the probability of curing an infected node, and &'
is the probability of making a cured node susceptible. This could be reduced to two
equations if desired, assuming a constraint of s + i+ ¢ = 1.

4.3. The Four-Condition S-E-I-C Case. If we add in the Exposed condition
then the system can be described as follows:

ds ,

&=

de o ,

— =sa—eu

t

gz. (4.4)
Pl 0

dc . .

i 16 — b

where e = E/N is the proportion of exposed nodes. In this case y' is the probability
of infecting an exposed node, 4 is the probability of curing an infected node, ¢’ is the
probability of making a cured node susceptible, and « is the probability of making
a susceptible node exposed. This could be reduced to three equations if desired,
assuming a constraint of s+e+17+c=1.

4.4. Discussion. Again, it should now be very clear that the differential equa-
tion models can easily be expanded to include m medical conditions, assuming that
the transitions between medical conditions occur in a ring (as is true for the models
examined thus far). Also, it is important to reiterate that the parameters §, i, o,
and ¢’ need not be constants, but may be functions that depend on the state of the
process (e.g., the proportion of infected nodes 7). A concrete example is shown in the
following section.

5. Random Directed Graphs and Measures of Network Connectivity.
The nice aspect of the above framework is that we have not had to yet define /', a,
4, and ¢'. In this paper we will assume that § is a constant that reflects an infected
node’s ability to cure itself (the strength of the immune system or the ability of the
sysop to rid the node of the virus). In the three-condition case, §' is a constant
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that reflects a cured node’s frequency of opening itself back up for infection (by
weakening the immune system through malnutrition or becoming lazy as a Sysop).
In the four-condition case, « is a constant that reflects the probability of making a
susceptible node exposed, and could be analogous to the likelihood of going to the
mall or connecting a computer to the net.! On the other hand, the probability that
a cured/susceptible/exposed node (depending on whether we are talking about the
two-, three-, or four-condition case) will become infected, 4/, is largely dependent
on the number of other neighboring nodes in the graph that are also infected. The
computation of y' is thus very dependent on the structure of the graph. In this paper
we recalculate this quantity for the case of the random directed graphs defined in {1].

A random directed graph of N nodes is constructed by making random, indepen-
dent decisions about whether to include each of the N(N — 1) possible directed edges
that can connect two nodes. Each edge is included in the graph with probability p.
Since there are N nodes, you can have at most N — 1 neighbors pointing towards each
node (one doesn’t connect to oneself). In expectation any given node has p(N — 1)
neighbors to itself. In [1] this is denoted as b = p(N — 1), and is a measure of the
connectivity of the network. We now state the function for ' for three separate
situations.

5.1. Strong Links. In this case you can only become infected from your neigh-
bors that are infected. The probability that an infected neighbor can transmit the
infection to you is A. Thus the probability that an infected neighbor won’t transmit
the infection to you is 1 — 3. Since i is the proportion of infected nodes in the network,
in expectation you will have iNb/(N — 1) infected neighbors (because once again the
assumption is that you yourself are not infected). The probability that none will
infect you is (1 — B):N¥/(N=1)_ Thus the probability that you will be infected by at
least one infected neighbor is:

iNb

ul:l—(l_ﬁ)N—l =1_(1_ﬂ)in

where once again 7 is the proportion of infected nodes.
If N is large, the reasonable approximation (which we will use throughout) is:

p=1-1-p"

If y and z are sufficiently small it is well known that a reasonable approximation
to (1 —y)? is 1 —yz. If this approximation is taken (which is not necessarily reasonable
in this situation) we obtain:

u = pib

which agrees with [1). Notice that although the systems of the two-, three-, and four-
condition cases appear as linear differential equations, the effective contacts between
infectives and susceptibles create a mass action term. This, in turn, makes the problem
of viral spread in a network a nonlinear one.

5.2. Weak Links. In this case you can also be infected from infected nodes that
are not your immediate neighbor. The probability of transmission in this case is By,.

In expectation you will have N —b— 1 non-immediate neighbors, of which (N — 5_— 1)
are infected. These neighbors will not infect you with probability (1~ ﬁw)’(N—b“l)

YThere is no reason why we can’t relax these assumptions if we wish.
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Putting it all together, the probability that you will be infected by at least one of
your immediate or non-immediate neighbors is:

#o=1- (1) (1 - p,) D

Making the same approximation used above, and throwing out further second-
order terms (which again may not be reasonable to do) yields:

i = Bib+ Bui(N —b—1)

which agrees with [1]. Very weak links in the form of mass action terms such as that
derived above, can qualitatively change the dynamics in coupled populations [2]-

5.3. Hierarchical Links. The final case we consider is that of hierarchical links.
In this case you do not assume that you have b neighbors. Instead, neighbors are
distributed around each node in L layers. The number of nodes at layer (distance) !
is 2'=! and there are a total of N = 2% nodes. The probability of transmission from
an infected node at distance  is given by Sy !, where 7 is a constant ranging from

0tol.
Following a similar process used above it is simple to show that the probability

of being infected is given as:
L

=1 H (1— ﬂoTl—l)izl_l

I=1

Making the same approximation used above, and throwing out all higher-order
terms (which again may not be reasonable to do) yields:

L
W=D pol2r)
=1

which agrees with [1].

6. Analysis and Comparison of the Models. Now that ' has been com-
puted for random-directed graphs, we are directly able to use either the Markov chain
or differential equation models of virus spread on random-directed graphs. We now
run simulations of the Markov models and compare the results to the differential

equation models.
6.1. The Two-Condition I-C Case. The differential equation for the two-
condition case is

L —(-a-a-ph-a,

where the constant solutions are found by solving % = 0. The zero solution, 75 = 0,
exists for all # and . The other solution is called the endemic solution, 2., which is
implicitly defined on 0 < § < min(—&In(1 — §),1). The two possible behaviors of this
model are divided in parameter space by the curve

§ = —bIn(1 - pB).

If § > —bIn(1 — B), solutions tend toward the solution 4 for all initial conditions. In
other words, the virus will naturally die out. In the rest of the parameter space, the
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1 .
i=0
stable

Two Solutions
i=0, unstable

)

§=-bIn(1-B
0 B 1

Fig. 6.1. The stability of io and ie in the two-condition case as a function of B and §.
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FiG. 6.2. The agreement of the Markov and ODE models in the two-condition case as a function
of the number of nodes, N. In this computation, B=02,8=02b=04(N-1), all of the nodes are
initially infected, and the Markov model is iterated 20 time steps. The percentage of nodes infected
increases ezponentially to 0.83 percent.

solution 7o is unstable and all solutions tend toward the stable, endemic solution 2.
Here, the virus will not naturally die out, but persist at a constant level. See Figure
6.1. The preferred behavior is for o to be stable.

The ODE model agrees with the Markov model depending on the initial condi-
tions. Shown in Figure 6.2, as the number of nodes is increased, the percentage of
nodes infected increases exponentially. The region where g is stable is also predicted
by the Markov model, with the division matching the curve § = —bIn(1 — ) as shown

in Figure 6.3.
6.2. The Three-Condition S-I-C Case. In two variables, assuming s+i+c =
1, the differential equation for the three-condition case is

d g
E=f(i—ims) - (1D - (=5
d? ) (6.1)
272 —(1-(1-B)P)s -
The zero fixed point is py = (0,1). The eigenvalues of the linearization about pg are
A\ = =6 and Xy = =6 — bIn(1 — B). Since 0 < §' < 1, then the eigenvalue A; < 0.
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FIG. 6.3. For the two-condition case, the stable solution i predicted by the Markov model after
20 time steps as a function of § and §. Here, N = 100 and b = 0.4(N — 1). Superimposed in green
is the curve § = —bln(1 — B) from the ODE model dividing where i and ic are stable.

The other eigenvalue, Az, is negative for 1 > ¢ > —bIn(1 — §), where pq a stable fixed
point. Note that this is the same curve as in the two-condition case. The associated

eigenvectors are
€; = (07 1)

_ (66 +bln(1—p) (6.2)
e2_< & —bln(l - B) ’1>‘

In the rest of parameter space, po is an unstable saddle fixed point. That is because
0 <6 < min(-bIn(1 — B), 1), making the eigenvalue Ay non-negative.
The endemic fixed point, pe = (i, S¢), is defined implicitly:
0= (1= ig)d — iys — —e08
1—(1- g 63)
_ 0 ’
I g

For an example solution, see Figure 6.4. The eigenvalues for this fixed point are
complex conjugates with norm less than 1, or stable, for parameters where the zero
solution, po is unstable. The expression § = —bIn(1—8) defines a surface in parameter
space (f3,9,4') on which pp has neutral stability. This surface divides where the virus
persists from where the virus dies out.

It would now be possible to run the three-condition case simulation for the Markov
model and compare the results to the ODE model, although we leave that for the
future.

7. Conclusions. We have derived a probabilistic framework that provides a
more accurate representation of how viruses spread throughout a network. In par-
ticular, the framework lays down the building blocks on which to incorporate more
realistic parameters, such as measures of connectivity, effective contact rates, and

different network architectures.
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FIG. 6.4. Sample solution in the three-condition case for initial condition (3, s,c) = (0.6,0.4,0),
p=0.1,8=03,8 =01, and b=5.

The framework is expressed in terms of Markov chain and differential equation
models. Although the Markov chain models are inherently more accurate, they are
also computationally more intractable. The differential equation models provide a vi-
able alternative approach. Simple dynamic models expressing the state variables have
been derived for large populations. The effective contact rates have been expressed in
terms of network connectivity measures, and generate a viral spread that is the result
of nonlinear mass action.

Analysis of the models shows that for an endemic state to persist, the trivial
solution of all susceptibles and no infectives must be unstable. A curve defining neutral
stability between die out and endemicity has been derived and computed based on a
stability exchange between the two states. Such curves provide a metric in which to
measure the spread of a virus in a network, and may provide a future parameter in
which to control the spread without sacrificing much network information flow.
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